2.7 二叉搜索树
什么是二叉搜索树?
二叉搜索树(Binary Search Tree, BST),也称为二叉查找树、二叉有序树或者排序二叉树。
它是一棵空树或者有如下性质的二叉树:
- 若任意节点的左子树不空,则左子树所有结点的值均小于它的根节点的值;
- 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
- 任意节点的左、右子树也分别为二叉查找树;
简单理解二叉搜索树
上面提到了二叉搜索树的特质,如何理解呢?其实很简单,别忘了前面提到的重要思想:树的定义是递归的。
假设有如下二叉搜索树:
不难看出:
- 根节点8,它的左子树3比它小,右子树10比他大。
- 右子树中所有节点都比它8要大,同理左子树中所有节点都比它小。
- 不光是根节点,对于任意非终端节点都是如此。
二叉搜索树的节点
/* BST的节点 */
typedef struct bst_node
{
/* 关键字项 */
int key;
/* 左孩子 */
struct bst_node *left;
/* 右孩子 */
struct bst_node *right;
/* 这里还可以带上其他数据,比如 void *value */
}bst_node;
二叉搜索树本身
创建树与树的节点
/* 创建一棵空二叉排序树 */
bst *bst_create(void) {
bst *bst = (struct bst*)malloc(sizeof(struct bst));
if(bst==NULL) return NULL;
bst->root = NULL;
bst->size = 0;
return bst;
}
/* 创建一个BST的节点 */
bst_node *bst_create_node(int key) {
bst_node *node = (struct bst_node*)malloc(sizeof(struct bst_node));
if(node==NULL) return NULL;
node->left = NULL;
node->right = NULL;
node->key = key;
return node;
}
二叉搜索树的搜索
以上图二叉树为例,搜索key = 7的节点,如何搜索?
- 指针从根节点8开始,key < 8,要搜索的节点肯定在节点8的左子树;
- 指针移动到节点3, key > 3,要搜索的节点肯定在节点3的右子树;
- 指针移动到节点5, key > 5, 要搜索的节点肯定在节点5的右子树;
- 指针移动到节点7,key = 7,这便是我们要找的节点。
C语言实现如下:
/*定义是搜索某个节点(child)还是搜索这个节点的双亲结点(parent)*/
#define BST_NODE_CHILD 0
#define BST_NODE_PARENT 1
/* Return:一个节点指针
* Args:
* bst:在此树或子树中查找
* type:节点类型:
* BST_NODE_CHILD:叶子节点
* BST_NODE_PARENT:父节点
* key:要查找的节点key值
*
* 注意:在查找给定参数key的父节点时,即便在树中没有任何节点的key等于给定的参数key
* (说明树中没有这个节点),也会返回一个它的理论父节点。
*/
bst_node *bst_search_node(bst_node *node, int type, int key)
{
bst_node *current = node;
bst_node *parent = NULL;
if(current==NULL) return NULL;
while (current != NULL)
{
if(key < current->key) {
parent = current;
current = current->left;
} else if(key == current->key) {
break;
} else{
parent = current;
current = current->right;
}
}
if(type == BST_NODE_CHILD) return current;
return parent;
}
二叉搜索树的插入(非递归)
我不太喜欢递归(太绕),而且很多人介绍二叉树的插入是递归法,个人觉得不优雅,讲一讲非递归的方法:
还以上图中的二叉树为例子,假如要插入一个节点15。
第一步是搜索。假如节点15已经存在于该二叉树,从二叉树的根节点开始搜索,搜索节点15。
显然,要真搜索还真搜索不到,但是我说了,是假如有节点15,那一路走下去,应该是节点8 -> 节点10 -> 节点14。
去除假设来看,节点14是叶子节点,没有左右子树,那么我们把要插入的节点15放到节点14的右子树不就行了?
所以,实际上,我们是在搜索要插入节点的父节点,返回该父节点,然后再接上要插入的节点就行了。
C语言实现如下(其中找到要插入节点的父节点,已经在上面实现):
/* 插入一个节点 */
bst *bst_insert_node(bst *bst, int key)
{
bst_node *current = bst->root;
bst_node *parent = NULL;
/* 如果是空二叉搜索树,则直接新建节点作为根节点即可 */
if (current==NULL) {
bst->root = bst_create_node(key);
} else {
/* 找到要插入节点的父节点 */
parent = bst_search_node(bst->root, BST_NODE_PARENT, key);
if(parent==NULL) return NULL;
/* 与父节点比大小,看应该在父节点的左子树还是右子树 */
if(key < parent->key) {
parent->left = bst_create_node(key);
} else if(key == parent->key) {
/* 如果key重复则取消插入 */
return NULL;
} else {
parent->right = bst_create_node(key);
}
}
/* 二叉搜索树的节点数增加1 */
bst->size ++;
return bst;
}
二叉搜索树的删除
删除一个节点,存在三种情况
- 该节点是终端节点,删除后不影响树的结构,直接删除即可
- 该节点有父节点,但只有一个分支,删除后不影响结构,直接删除。
- 该节点有两个分支,删除后需要重建树。重建的思路有两个,第一种是寻找该节点左子树中key值最大的节点,并替换该节点。第二种是,寻找该节点右子树中key值最小的节点,并替换改节点,以使树的结构保持不变。
删除节点14(情况2)动图演示:
删除节点3(情况3)动图演示:
下面是具体代码实现:
void bst_delete_node(bst *bst, int key)
{
bst_node *parent = bst_search_node(bst->root, BST_NODE_PARENT, key);
bst_node *current, *temp, *max;
current = bst_search_node(parent, BST_NODE_CHILD, key);
/* 如果这是一颗只有根节点的树 (情况 1)*/
if(parent==NULL && current==NULL) {
temp = bst->root;
bst->root = NULL;
}
/* 如果该节点是终端节点 (情况 1) */
else if(current->left==NULL && current->right==NULL) {
/* 易错点,可能会写成parent->left->key == current->key */
if(current->key < parent->key) {
temp = parent->left;
parent->left = NULL;
} else {
temp = parent->right;
parent->right = NULL;
}
}
/* 如果该节点左子树为空(情况 2) */
else if(current->left==NULL) {
temp = current->right;
current->key = current->right->key;
current->left = current->right->left;
current->right = current->right->right;
}
/* 如果该节点右子树为空(情况 2) */
else if(current->right==NULL) {
temp = current->left;
current->key = current->left->key;
current->left = current->left->left;
current->right = current->left->right;
}
/* 如果该节点左右子树都不为空(情况 3) */
else {
max = bst_find_max_node(current->left, BST_NODE_PARENT);
/* 如果被删除的节点,其左子树中最大的节点的父节点为空,则说明该节点左子树中最大的节点为此被删除节点的左孩子。 */
if (max==NULL) {
temp = current->left;
current->key = current->left->key;
current->left = current->left->left;
} else {
temp = max->right;
current->key = max->right->key;
max->right = max->right->left;
}
}
free(temp);
bst->size--;
return ;
}
二叉搜索树的遍历与测试
中序遍历与别的二叉树无异,测试我们同样写在main函数中
/* 中序遍历 */
void bst_inorder_traversal(bst_node *node) {
if(node != NULL) {
bst_inorder_traversal(node->left);
printf("%d\t", node->key);
bst_inorder_traversal(node->right);
}
}
int main() {
bst *bst = bst_create();
int arr[] = {21, 3, 5, 26, 29, 50, 18, 53, 8, 67, 1, 78, 6};
//int arr[] = {5, 6, 4};
int length = sizeof(arr) / sizeof(int);
int i;
for(i=0;i<length;i++) {
bst_insert_node(bst, arr[i]);
printf("size: %d ", bst->size);
printf("Inorder Traversal: ");
bst_inorder_traversal(bst->root);
printf("\n");
}
for(i=length-1;i>=0;i--) {
bst_delete_node(bst, arr[i]);
printf("size: %d ", bst->size);
printf("Inorder Traversal: ");
bst_inorder_traversal(bst->root);
printf("\n");
}
/* 释放这棵二叉树 */
free(bst);
return 0;
}
编译并运行:
# gcc bst.c && ./a.out
size: 1 Inorder Traversal: 21
size: 2 Inorder Traversal: 3 21
size: 3 Inorder Traversal: 3 5 21
size: 4 Inorder Traversal: 3 5 21 26
size: 5 Inorder Traversal: 3 5 21 26 29
size: 6 Inorder Traversal: 3 5 21 26 29 50
size: 7 Inorder Traversal: 3 5 18 21 26 29 50
size: 8 Inorder Traversal: 3 5 18 21 26 29 50 53
size: 9 Inorder Traversal: 3 5 8 18 21 26 29 50 53
size: 10 Inorder Traversal: 3 5 8 18 21 26 29 50 53 67
size: 11 Inorder Traversal: 1 3 5 8 18 21 26 29 50 53 67
size: 12 Inorder Traversal: 1 3 5 8 18 21 26 29 50 53 67 78
size: 13 Inorder Traversal: 1 3 5 6 8 18 21 26 29 50 53 67 78
size: 12 Inorder Traversal: 1 3 5 8 18 21 26 29 50 53 67 78
size: 11 Inorder Traversal: 1 3 5 8 18 21 26 29 50 53 67
size: 10 Inorder Traversal: 3 5 8 18 21 26 29 50 53 67
size: 9 Inorder Traversal: 3 5 8 18 21 26 29 50 53
size: 8 Inorder Traversal: 3 5 18 21 26 29 50 53
size: 7 Inorder Traversal: 3 5 18 21 26 29 50
size: 6 Inorder Traversal: 3 5 21 26 29 50
size: 5 Inorder Traversal: 3 5 21 26 29
size: 4 Inorder Traversal: 3 5 21 26
size: 3 Inorder Traversal: 3 5 21
size: 2 Inorder Traversal: 3 21
size: 1 Inorder Traversal: 21
size: 0 Inorder Traversal: